Dstat-Tools ()

A dstat monitor plotting script for data from multiple nodes of a cluster.

This ruby script uses GNUPlot through a ruby wrapper (ruby_gnuplot) to plot csv data generated by mvneves’ dstat-monitor.

Pre-requisites and Installation

You need an installation of the ruby programming language, X11, GNUPlot and the ruby_gnuplot gem. The gems csv and optparse are part of the ruby standard library.

To install on a Mac do the following steps:

1. Install XQuartz from here:
    http://xquartz.macosforge.org/landing/
2. Install gnuplot with homebrew:
    brew install gnuplot --with-x11
3. Install gnuplot gem:
    gem install gnuplot

For linux the procedure is

1. Install gnuplot (your distribution might come with it though)
    sudo apt-get install gnuplot
2. Install gnuplot gem:
    gem install gnuplot
3. Install csv gem
    gem install fastercsv

Usage

Usage:
dstat_plot.rb [options] -c CATEGORY -f FIELD [directory | file1 file2 ...] or
dstat_plot.rb [options] -l COLUMN [directory | file1 file2 ...]
    -v, --verbose                    Output more information
    -i, --invert [VALUE]             Invert the graph such that inverted(x) = VALUE - f(x),
                                     default is 100.
    -n, --no-key                     No plot key is printed.
    -d, --dry                        Dry run. Plot is not saved to file but instead displayed with gnuplot.
    -o, --output FILE|DIR            File or Directory that plot should be saved to.
                                     If a directory is given the filename will be generated.
                                     Default is csv file directory.
    -y, --y-range RANGE              Sets the y-axis range. Default is 105. If a value exceeds
                                     this range, "autoscale" is enabled.
    -t, --title TITLE                Override the default title of the plot.
    -s, --smoothing ALGORITHM        Smooths the graph using the given algorithm.
    -a, --average-over SLICE_SIZE    Calculates the average for slice_size large groups of values.

    -c, --category CATEGORY          Select the category.
    -f, --field FIELD                Select the field.
    -l, --column COLUMN              Select the desired column directly.
    
    -h, --help                       Display this screen.

(-c CATEGORY -f FIELD or -l COLUMN are mandatory parameters)

The plot is saved as category-field.png in the folder where the csv files are located unless -o PATH explicitly specifies a different destination.

Example

ruby dstat_plot.rb -c "total cpu usage" -f "usr" example.csv

example plot

The equivalent with the -l option would be

ruby dstat_plot.rb -l 11 example.csv

Possible category - field combinations

(N is the cpu core index for 0..n cores)

Categoriy Field Column Categoriy Field Column
epoch epoch 0 net/total recv 23
memory usage used 1   send 24
  buff 2 net/eth0 recv 25
  cach 3   send 26
  free 4 dsk/total read 27
swap used 5   writ 28
  free 6 dsk/sda read 29
system int 7   writ 30
  csv 8 io/total read 31
paging in 9   writ 32
  out 10 io/sda read 33
total cpu usage usr 11   writ 34
  sys 12      
  idl 13      
  wai 14      
  hiq 15      
  siq 16      
cpuN usage usr 17      
  sys 18      
  idl 19      
  wai 20      
  hiq 21      
  siq 22      

Smoothing

You can take advantage of a variety of different smoothing algorithms to make your plots more easy on the eye, especially if you’re plotting data from a large number of nodes all in one plot.

To do so use the options –smoothing ALGORITHM when running dstat-plot

Available smoothing algorithms are

unique, frequency, cumulative, cnormal, kdensity, unwrap, csplines, acsplines, mcsplines, bezier, sbezier

As an example

ruby dstat_plot.rb -s acsplines -c "total cpu usage" -f "usr" example.csv

will give you the following result smoothing example